Research Article| Volume 63, 102258, April 2023

Download started.


Development and validation of a risk prediction model for breast cancer-related lymphedema in postoperative patients with breast cancer

Published:December 31, 2022DOI:


      • Predictors of lymphoedema risk included time since breast cancer surgery, level of lymph node dissection, number of lymph nodes dissected, radiotherapy, and postoperative BMI.
      • These results have potential value in guiding strategies for early identification and monitoring of lymphoedema and patient education in clinical practice.



      Breast cancer-related lymphedema (BCRL) is a common post-operative complication in patients with breast cancer. Here, we sought to develop and validate a predictive model of BCRL in Chinese patients with breast cancer.


      Clinical and demographic data on patients with breast cancer were collected between 2016 and 2021 at a Cancer Hospital in China. A nomogram for predicting the risk of lymphedema in postoperative patients with breast cancer was constructed and verified using R 3.5.2 software. Model performance was evaluated using area under the ROC curve (AUC) and goodness-of-fit statistics, and the model was internally validated.


      A total of 1732 postoperative patients with breast cancer, comprising 1212 and 520 patients in the development and validation groups, respectively, were included. Of these 438 (25.39%) developed lymphedema. Significant predictors identified in the predictive model were time since breast cancer surgery, level of lymph node dissection, number of lymph nodes dissected, radiotherapy, and postoperative body mass index. At the 31.9% optimal cut-off the model had AUC values of 0.728 and 0.710 in the development and validation groups, respectively. Calibration plots showed a good match between predicted and observed rates. In decision curve analysis, the net benefit of the model was better between threshold probabilities of 10%–80%.


      The model has good discrimination and accuracy for lymphedema risk assessment, which can provide a reference for individualized clinical prediction of the risk of BCRL. Multicenter prospective trials are required to verify the predictive value of the model.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Oncology Nursing
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Armer J.M.
        • Ballman K.V.
        • McCall L.
        • Ostby P.L.
        • Zagar E.
        • Kuere H.M.
        • Hunt K.K.
        • Boughey J.C.
        Factors associated with lymphoedema in women with node-positive breast cancer treated with neoadjuvant chemotherapy and axillary dissection.
        JAMA Surg. 2019; 154: 800-809
        • Asdourian M.S.
        • Swaroop M.N.
        • Sayegh H.E.
        • Brunelle C.L.
        • Mina A.I.
        • Zheng H.
        • Skolny M.N.
        • Taghian A.G.
        Association between precautionary behaviors and breast cancer–related lymphoedema in patients undergoing bilateral surgery.
        J. Clin. Oncol. 2017; 35: 3934
        • Basta M.N.
        • Wu L.C.
        • Kanchwala S.K.
        • Serletti J.M.
        • Tchou J.C.
        • Kovach S.J.
        • Fosnot J.
        • Fischer J.P.
        Reliable prediction of postmastectomy lymphoedema:the risk assessment tool evaluating lymphoedema.
        Am. J. Surg. 2017; 213: 1125-1133
        • Bevilacqua J.L.B.
        • Kattan M.W.
        • Yu C.
        • Koifman S.
        • Mattos I.E.
        • Koifman R.J.
        • Bergmann A.
        Nomograms for predicting the risk of arm lymphoedema after axillary dissection in breast cancer.
        Ann. Surg Oncol. 2012; 19: 2580-2589
        • Cheville A.L.
        • McGarvey C.L.
        • Petrek J.A.
        • Russo S.A.
        • Thiadens S.R.J.
        • Taylor M.E.
        The grading of lymphoedema in oncology clinical trials.
        Semin. Radiat. Oncol. 2003; 13: 214-225
        • Disipio T.R.S.
        • Newman B.
        • Hayes S.
        Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis.
        Lancet Oncol. 2013; 14: 500-515
        • Dayan J.H.
        • Ly C.L.
        • Kataru R.P.
        • Mehrara B.J.
        Lymphoedema: pathogenesis and novel therapies.
        Annu. Rev. Med. 2018; 69: 263-276
        • Ferlay J.
        • Colombet M.
        • Soerjomataram I.
        • Parkin D.M.
        • Piñeros M.
        • Znaor A.
        • Bray F.
        Cancer statistics for the year 2020: an overview.
        Int. J. Cancer. 2021; 149: 778-789
        • Gebruers N.
        • Verbelen H.
        • Vrieze T.D.
        • Coeck D.
        • Tjalma W.
        Incidence and time path of lymphoedema in sentinel node negative breast cancer patients: a systematic review.
        Arch. Phys. Med. Rehabil. 2015; 96: 1131-1139
        • Handelman G.S.
        • Kok H.K.
        • Chandra R.V.
        • Razavi A.H.
        • Lee M.J.
        • Asadi H.
        eDoctor: machine learning and the future of medicine.
        J. Intern. Med. 2018; 284: 603-619
        • Hashemi H.S.
        • Fallone S.
        • Boily M.
        • Towers A.
        • Kilgour R.D.
        • Rivaz H.
        Assessment of mechanical properties of tissue in breast cancer-related lymphoedema using ultrasound elastography.
        IEEE Trans. Ultrason. Ferroelectrics. 2018; 66: 541-550
        • International Society of Lymphology
        The diagnosis and treatment of peripheral lymphoedema: 2016 consensus document of the International Society of Lymphology.
        Lymphology. 2016; 49: 170-184
        • Johnson A.R.
        • Kimball S.
        • Epstein S.
        • Abram R.
        • Lin S.J.
        • Lee B.T.
        • James T.A.
        • Dhruv S.
        Lymphoedema incidence after axillary lymph node dissection: quantifying the impact of radiation and the lymphatic microsurgical preventive healing approach.
        Ann. Plast. Surg. 2019; 82: S234-S241
        • Kuijer A.
        • Dominici L.S.
        • Rosenberg S.M.
        • Hu J.
        • Gelber S.
        • Lascio S.D.
        • Wong J.S.
        • Ruddy K.J.
        • Tamimi R.M.
        • Schapira L.
        • Borges V.F.
        • Come S.E.
        • Sprunck-Harrild K.
        • Partridge A.H.
        • King T.A.
        Arm morbidity after local therapy for young breast cancer patients.
        Ann. Surg Oncol. 2021; 28: 6071-6082
        • Liu Y.F.
        • Liu J.E.
        • Zhu Y.
        • Mak Y.W.
        • Qiu H.
        • Liu L.
        • Yang S.
        • Chen S.
        Development and validation of a nomogram to predict the risk of breast cancer-related lymphoedema among Chinese breast cancer survivors.
        Support. Care Cancer. 2021; 29: 5435-5445
        • Li X.P.
        • Huang H.
        • Lin Q.M.
        • Yu Q.H.
        • Zhou Y.
        • Long W.S.
        • Wang N.X.
        Validation of a breast cancer nomogram to predict lymphedema in a Chinese population.
        J. Surg. Res. 2017; 210: 132-138
        • McLaughlin S.A.
        • Brunelle C.L.
        • Taghian A.
        Breast cancer–related lymphoedema: risk factors, screening, management, and the impact of locoregional treatment.
        J. Clin. Oncol. 2020; 38: 2341
        • Moons K.G.
        • Altman D.G.
        • Reitsma J.B.
        • Ioannidis J.P.A.
        • Macaskill P.
        • Steyerberg E.W.
        • Vickers A.J.
        • Ransohoff D.F.
        • Collins G.S.
        Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration.
        Ann. Intern. Med. 2015; 162: W1-W73
        • National Lymphoedema Network Medical Advisory Committee
        Position Statement of the National Lymphoedema Network:lymphoedema Risk Reduction Practices.
        2011 ([cited 5 January 2021].Avaliable from:)
        • Penn I.W.
        • Chang Y.C.
        • Chuang E.
        • Chen C.M.
        • Kuo C.Y.
        • Chuang T.Y.
        Risk factors and prediction model for persistent breast-cancer-related lymphoedema: a 5-year cohort study.
        Support. Care Cancer. 2019; 27: 991-1000
        • Rafn B.S.
        • Christensen J.
        • Larsen A.
        • Kira B.
        Prospective surveillance for breast cancer–related arm lymphedema: a systematic review and meta-analysis.
        J. Clin. Oncol. 2022; 40: 1009-1026
        • Rockson S.G.
        Lymphoedema after breast cancer treatment.
        N. Engl. J. Med. 2018; 379: 1937-1944
        • Shaitelman S.F.
        • Cromwell K.D.
        • Rasmussen J.C.
        • Stout N.L.
        • Armer J.M.
        • Lasinski B.B.
        • Cormier J.N.
        Recent progress in the treatment and prevention of cancer-related lymphoedema.
        CA A Cancer J. Clin. 2015; 65: 55-81
        • Singh B.
        • Disipio T.
        • Peake J.
        • Hayes S.C.
        Systematic review and meta-analysis of the effects of exercise for those with cancer-related lymphoedema.
        Arch. Phys. Med. Rehabil. 2016; 97: 302-315
        • Wei X.
        • Lu Q.
        • Jin S.
        • Li F.
        • Zhao Q.
        • Cui Y.
        • Jin S.
        • Cao Y.
        • Fu M.
        Developing and validating a prediction model for lymphoedema detection in breast cancer survivors.
        Eur. J. Oncol. Nurs. 2021; 54102023
        • Wu X.
        • Guan Q.
        • Cheng A.S.K.
        • Guan C.
        • Su Y.
        • Jiang J.
        • Wang B.
        • Zeng L.
        • Zeng Y.
        Comparison of machine learning models for predicting the risk of breast cancer-related lymphedema in Chinese women.
        Asia Pac. J. Oncol. Nurs. 2022; 100101
        • Weiss J.
        • Kuusisto F.
        • Boyd K.
        • Boyd K.
        • Liu J.
        • Page D.
        Machine learning for treatment assignment: improving individualized risk attribution.
        AMIA Annu. Symp. Proc. 2015; (2015) (PMID: 26958271): 1306-1315
        • Yusof K.M.
        • Avery-Kiejda K.A.
        • Suhaimi S.A.
        • Zamri N.A.
        • Fitri Rusli M.E.
        • Mahmud R.
        • Saini S.M.
        • Wahhab Ibraheem S.A.
        • Abdullah & M.
        • Rosli R.
        Assessment of potential risk factors and skin ultrasound presentation associated with breast cancer-related lymphedema in long-term breast cancer survivors.
        Diagnostics. 2021; 11: 1303
        • Zhang X.
        • He X.
        • Tang B.
        • Yang H.
        • Ding X.
        • Yu Y.
        • Chen D.
        • Mo W.
        • Xia X.
        • Ni J.
        • Zhang Y.
        • Jiang C.
        • Shi J.
        • Zou D.
        Risk factors of lymphoedema on affected side of upper limb after breast cancer surgery–report from a single center of China.
        Int. J. Clin. Exp. Med. 2017; 10: 1592-1601